
Contents lists available at ScienceDirect
Information Systems

Information Systems 45 (2014) 61–68
0306-43
http://d

n Corr
Russian
Novgoro

E-m
journal homepage: www.elsevier.com/locate/infosys
Approximate nearest neighbor algorithm based on navigable
small world graphs

Yury Malkov a,b,n, Alexander Ponomarenko b,c, Andrey Logvinov b,
Vladimir Krylov b,d

a The Institute of Applied Physics of the Russian Academy of Sciences, 46 Ul'yanov Street, 603950 Nizhny Novgorod, Russia
b MERA Labs LLC, 13, Delovaya St., Nizhny Novgorod 603163, Russia
c National Research University Higher School of Economics, Laboratory of Algorithms and Technologies for Network Analysis, 136
Rodionova, Nizhny Novgorod 603093, Russia
d Nizhny Novgorod State Technical University, Nizhny Novgorod, Russia
a r t i c l e i n f o

Available online 4 November 2013

Keywords:
Similarity search
k-Nearest neighbor
Approximate nearest neighbor
Navigable small world
Distributed data structure
79/$ - see front matter & 2013 Elsevier Ltd.
x.doi.org/10.1016/j.is.2013.10.006

esponding author at: The Institute of App
Academy of Sciences, 46 Ul’yanov Street, 60
d, Russia.
ail address: yurymalkov@mail.ru (Y. Malkov)
a b s t r a c t

We propose a novel approach to solving the approximate k-nearest neighbor search
problem in metric spaces. The search structure is based on a navigable small world graph
with vertices corresponding to the stored elements, edges to links between them, and a
variation of greedy algorithm for searching. The navigable small world is created simply
by keeping old Delaunay graph approximation links produced at the start of construction.
The approach is very universal, defined in terms of arbitrary metric spaces and at the same
time it is very simple. The algorithm handles insertions in the same way as queries: by
finding approximate neighbors for the inserted element and connecting it to them. Both
search and insertion can be done in parallel requiring only local information from the
structure. The structure can be made distributed. The accuracy of the probabilistic
k-nearest neighbor queries can be adjusted without rebuilding the structure.

The performed simulation for data in the Euclidean spaces shows that the structure built
using the proposed algorithm has small world navigation properties with log2ðnÞ insertion and
search complexity at fixed accuracy, and performs well at high dimensionality. Simulation on a
CoPHiR dataset revealed its high efficiency in case of large datasets (more than an order of
magnitude less metric computations at fixed recall) compared to permutation indexes. Only
0.03% of the 10 million 208-dimensional vector dataset is needed to be evaluated to achieve
0.999 recall (virtually exact search). For recall 0.93 processing speed 2800 queries/s can be
achieved on a dual Intel X5675 Xenon server node with Java implementation.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The scalability of any software system is limited by the
scalability of its data structures. Massively distributed
systems like BitTorrent or Skype are based on distributed
All rights reserved.

lied Physics of the
3950 Nizhny

.

hash tables. While the latter structures have good scalability,
their search functionality is limited to the exact matching.
This limitation arises because small changes in an element
value lead to large and chaotic changes in the hash value,
making the hash-based approach inapplicable to the range
search and the similarity search problems.

However, there are many applications (such as pattern
recognition and classification [1], content-based image
retrieval [2], machine learning [3], recommendation sys-
tems [4], searching similar DNA sequence [5], semantic

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2013.10.006
http://dx.doi.org/10.1016/j.is.2013.10.006
http://dx.doi.org/10.1016/j.is.2013.10.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2013.10.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2013.10.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2013.10.006&domain=pdf
mailto:yurymalkov@mail.ru
http://dx.doi.org/10.1016/j.is.2013.10.006


Y. Malkov et al. / Information Systems 45 (2014) 61–6862
document retrieval [6]) that require the similarity search
rather than just exact matching. The k-nearest neighbor
search (k-NNS) problem is a mathematical formalization
for similarity search. It is defined as follows: we need to
find the set of k closest objects PDX from a finite set of
objects XDD to a given query qAD, where D is the set of
all possible objects (the data domain). Closeness or proxi-
mity of two objects o′; o″AD is defined as a distance
function δðo′; o″Þ.

A naïve solution for the k-NNS problem is to calculate
the distance function δ between q and every element from
X. This leads to linear search time complexity, which is
much worse than the scalability of structures for exact
match search, and makes the naïve version of k-NNS
almost impossible to use for large size datasets.

We suggest a solution for the nearest neighbor search
problem: a data structure represented by a graph GðV ; EÞ,
where every object oi from X is uniquely associated with a
vertex vi from V . Searching for the closest elements to the
query q from the data set X takes the form of searching for
a vertices in the graph G.

This gives an opportunity for building decentralized simi-
larity search oriented storage systems where physical data
location does not depend on the content because every data
object can be placed on an arbitrary physical machine and can
be connected with others by links like in p2p systems.

One of the basic vertex search algorithms in graphs
with metric objects is the greedy search algorithm. It has a
simple implementation and can be initiated from any
vertex. In order for the algorithm to work correctly (always
return precise results), the network must contain the
Delaunay graph as its subgraph, which is dual to the
Voronoi tessellation [7]. However, there are major draw-
backs associated with the Delaunay graph: it requires
some knowledge of metric space internal structure [8]
and it suffers from the curse of dimensionality [7]. More-
over, for the applications described above, the precise
exactness of the search is not required. So the problem
of finding the exact nearest neighbors can be substituted
by the approximate nearest neighbor search, and thus we
do not need to support the whole/exact Delaunay graph.

Graphs with logarithmic scalability of the greedy
search algorithm are called navigable small world graphs,
they are well known in Euclidean spaces [9]. Note that the
small world models (not navigable small world) like [10]
do not have this feature. Even though there are short paths
in the graph, the greedy algorithm do no tend to find
them, in the end having a power law search complexity.
Solutions for constructing a navigational small world
graphs were proposed for general spaces but they are
usually more complex, requiring sampling, iterations,
rewiring etc. [11–14]. We show that the small world
navigation property can be achieved with a much simpler
technique even without prior knowledge of internal struc-
ture of a metric space (e.g. dimensionality or data density
distribution).

In this paper we present a simple algorithm for the data
structure construction based on a navigable small world
network topology with a graph GðV ; EÞ, which uses the
greedy search algorithm for the approximate k-nearest
neighbor search problem. The graph GðV ; EÞ contains an
approximation of the Delaunay graph and has long-range
links together with the small-world navigation property.
The search algorithm we propose has the ability to choose
the accuracy of search without modification of the struc-
ture. Presented algorithms do not use the coordinate
representation and do not presume the properties of
Euclidean spaces, because they are based only on compar-
ing distances between the objects and the query, and
therefore in principle are applicable to data from general
metric (or even non-metric) spaces. Simulations revealed
weak dimensionality dependence for Euclidean data.

2. Related work

Kd-tree [15] and quadra trees [16] were among the first
works on the kNN problem. They perform well in 2–3
dimensions (search complexity is close to Oðlog nÞ in
practice), but the analysis of the worst case for these
structures [17] indicates OðdnN1�1=dÞ search complexity,
where d is the dimensionality.

In Ref. [8] was proposed an exact-proximity search
structure that uses the Delaunay graph with the greedy
search algorithm. Authors showed the impossibility of
finding the exact Delaunay graph in a general metric
space, and to keep the search exact they resort to back-
tracking. Proposed data structure has construction time
Oðn log2 n= log log nÞ and search time Oðn1�Θð1= log log nÞÞ in
high dimensions and OðnαÞ; ð0oαo1Þin low dimensions.

In general, currently there are no methods for effective
exact NNS in high-dimensionality metric spaces. The
reason behind this lies in the “curse” of dimensionality
[18]. To avoid the curse of dimensionality while retaining
the logarithmic cost on the number of elements, it was
proposed to reduce the requirements for the kNN problem
solution, making it approximate (Approximate kNN).

There are two commonly used definitions of the
approximate neighbor search. One class of methods pro-
posed to search with predefined accuracy ε (ε-NNS). It
means that the distance between the query and any
element in the result is no more than 1þε times the
distance from query to its true k-th nearest neighbor. Such
methods have been described in [19–23]. Another class
gives probability guarantee of finding true k closest point
to the query [24–31], using “recall” (the fraction of true k
nearest elements found).

Some structures [19–23] can be applied only to Euclidean
space. Other methods [24–31] are applicable to the general
metric space. More can be found in reviews [32,33].

Permutation indexes (PI) [25,34] is an efficient non-
distributed algorithm suitable for general metric spaces.
The idea behind PI is to represent each database object
with the permutation of a set of references, called the
permutants, sorted by distance to the object. The distance
between objects is hinted by the distance between their
respective permutations. PI is known to have high preci-
sion and recall even for datasets with high intrinsic
dimensionality.

The work by Houle and Sakuma [26] features a prob-
abilistic tree-like structure for the approximate nearest
neighbor search in general metric spaces, based on selec-
tion of the nearest neighbors. The algorithmwas simulated



Fig. 1. Graph representation of the structure. Circles (vertices) are the
data in metric space, black edges are the approximation of the Delaunay
graph, and red edges are long range links for logarithmic scaling. Arrows
show a sample path of the greedy algorithm from the entry point to the
query (shown green). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Y. Malkov et al. / Information Systems 45 (2014) 61–68 63
on real-life data. The work by Chávez and Tellez [27] also
uses determination of nearest neighbors in its construction
algorithm, with the greedy algorithm used for searching.
The main drawback of the algorithm is poor (linear)
scalability with the size of the dataset. Both algorithms
offer high recall in return for evaluation of only a tiny
portion of the dataset.

Kleinberg's work [9] has shown the possibility of using
navigable small world networks for finding the nearest
neighbor with the greedy search algorithm. The algorithm
relied on random long-range links following the power
law of link length probability r� γ , γ for navigation and
2-dimensional lattice for correctness of the results. To have
navigable small world properties, the link length distribu-
tion has to have a specific value of γ. In Voronet [35],
Kleinberg's approach was extended to arbitrary 2-
dimensional data by building a two-dimensional Delaunay
tessellation instead of a regular lattice. In their next work
[13] they have weakened the requirements on the exact-
ness of the search in order to avoid the curse of dimen-
sionality for the d-dimension Euclidean space. The
algorithm approximates the Delaunay graph by selecting
3dþ1 neighbors that minimize the volume of the corre-
sponding Voronoi cell. The algorithm relies heavily on the
quality of the Delaunay graph approximation, it has to be
repeated iteratively to reach acceptable accuracy, and in
principle works only in the Euclidean space. The work,
together with the others [11–14], also presented some
sophisticated algorithms for supporting the Kleinberg's
power law link length distribution with a specific
exponent value.
3. Core idea

The structure S is constructed as a navigable small world
network represented by a graph GðV ; EÞ, where objects from
the set X are uniquely mapped to vertices from the set V .
The set of edges E is determined by the structure construc-
tion algorithm. Since each vertex is uniquely mapped to an
element from the set X, we will use the terms “vertex”,
“element” and “object” interchangeably. We will use the
term “friends” for vertices that share an edge. The list of
vertices that share a common edge with the vertex vi is
called the friend list of the vertex vi.

We use a variation of the greedy search algorithm as a
base algorithm for the k-NN search. It traverses the graph
from an element to another element each time selecting
an unvisited friend closest to the query until it reaches a
stop condition. See a detailed description of the algorithms
in Section 4.2.

It is important to note that links (edges) in the graph
serve two distinct purposes:
1)
 There is a subset of short-range links, which are used as
an approximation of the Delaunay graph [7] required
by the greedy search algorithm.
2)
 Another subset is the long-range links, which are used
for logarithmic scaling of the greedy search. Long-range
links are responsible for the navigation small world
properties of the constructed graph [9].
The structure performance is illustrated in Fig. 1.
The construction of the structure is based on the con-

secutive insertion of all elements. For every new incoming
element, we find the set of its closest neighbors (Delaunay
graph approximation) from the structure. The set is con-
nected to the element and vice versa. As more and more
elements are inserted into the structure, links that previously
served as short-range links now become long-range links
(for details see Section 5) making a navigable small world. All
queries in the structure are independent; they can be done in
parallel, and if the elements are placed randomly on physical
computer nodes, then the processing query load can be
shared across physical nodes.

4. Search algorithm

4.1. Basic greedy search algorithm

The basic single nearest neighbor search algorithm tra-
verses the edges of the graph GðV ; EÞ from one vertex to
another. The algorithm takes two parameters: query and the
vertex Ventry_pointAV ½G� which is the starting point of a search
(the entry point). Starting from the entry point, the algorithm
computes a distance from the query q to each vertex from the
friend list of the current vertex, and then selects a vertex with
the minimal distance. If the distance between the query and
the selected vertex is smaller than the one between the query
and the current element, then the algorithm moves to the
selected vertex, and it becomes new current vertex. The
algorithm stops when it reaches a local minimum: a vertex
whose friend list does not contain a vertex that is closer to the
query than the vertex itself. The algorithm

Greedy_Search(q: object, ventry_point: object)

1 vcurr←ventry_point;

2 δmin←δ(q, vcurr); vnext←NIL;

3 foreach vfriendAvcurr.getFriends() do

4 δ fr←d (query, vfriend)

5 if δ froδ min then

6 δ min←δ fr;

7 vnext←vfriend;

8 if vnext¼NIL then return vcurr;

9 else return Greedy_Search(q, vnext);
The element which is a local minimumwith respect to the
query qAD can be either the true closest element to the



Y. Malkov et al. / Information Systems 45 (2014) 61–6864
query q from all elements in the set X, or a false closest (an
error).

If every element in the structure had in their friend list
all of its Voronoi neighbors, then this would preclude the
existence of false global minima. Maintaining this condi-
tion is equivalent to constructing the Delaunay graph,
which is dual to the Voronoi diagram.

It turns out that it is impossible to determine exact
Delaunay graph for an unknown metric space [8] (excluding
the variant of the complete graph), so we cannot avoid the
existence of false global minima. For the problem of approx-
imate search as defined above it is not an obstacle, since
approximate search does not require the entire Delaunay
graph [13].

Note that there is a distinction from the ANN pro-
blem defined in the works [19–23] where it is expressed
in terms of ε-neighborhood. Like in [24–31] in our
structure there are no constrains on the absolute value
of the distance between the algorithm NN results and
true NN results. The result guaranties are probabilistic,
meaning that only the probability of finding the true
nearest neighbor is guaranteed. It may be more con-
venient to use such definition of the search effective-
ness when the data distribution is highly skewed and it
is hard to define one value ε for all regions at the
same time.

4.2. k-NN search modification

In our previous work [36] we have used a simple
algorithm for k-NN search based on a series of m searches
and returns the best results of these. With each subsequent
search, the probability of not finding the nearest neighbors
decreases exponentially, allowing boosting the accuracy of
the structure without the need for reconstruction.

In this work we present a more sophisticated version of
the k-NN algorithm with two key modifications:
1)
 We use different stop condition. The algorithm iterates
on not previously visited elements (i.e. those for which
the link list has not been read) closest to the queries. It
stops when at the next iteration, k closest results to the
query do not change. Simply put, the algorithm keeps
exploring the neighborhood of the closest elements in a
greedy manner as long as it can improve the known k

closest elements on each step.

2)
 The list of previously visited elements visitedSet is

shared across the series of searches preventing useless
repeated extractions.
K-NNSearch(object q, integer: m, k)

1 TreeSet [object] tempRes, candidates, visitedSet,

result

2 for (i←0; iom; iþþ) do:

3 put random entry point in candidates

4 tempRes←null

5 repeat:

6 get element c closest from candidates

to q

7 remove c from candidates

8 //check stop condition:

9 if c is further than k-th element from result
10 than break repeat

11 //update list of candidates:

12 for every element e from friends of c do:

13 if e is not in visitedSet than

14 add e to visitedSet, candidates, tempRes

15

16 end repeat

17 //aggregate the results:

18 add objects from tempRes to result

19 end for

20 return best k elements from result
The use of TreeSet ordered lists allows storing evaluated
elements in the order of proximity to the query, thus easily
extracting closest elements from the set, which is required
on steps 6, 9 and 20.

If m is big enough, the algorithm becomes an exhaustive
search, assuming that entry points are never reused. If the
graph of the network has the small-world property, then it
is possible to choose a random vertex without any metric
calculations in a number of random steps proportional to
the logarithm of the dataset size, which does not yield the
overall logarithmic search complexity.
5. Data insertion algorithm

Since we build an approximation of the Delaunay
graph, there is a great freedom in the details of the
construction algorithm. The main goal is to minimize the
probability of false global minima while keeping the
number of links as small possible. Some approaches are
based on knowledge of topology of the metric space being
used. For example, in [13] it is proposed to build an
approximate Delaunay graph which would minimize the
volume of a Voronoi region (computed by the Monte-Carlo
method) for a fixed number of edges for each vertex in the
graph (achieved by iterating a selection of neighbors of
every node in the graph several times). We propose to
assemble the structure by inserting elements one by one
and connecting them on each step with the f closest
objects which are already in the structure. Our approach is
based on the idea that intersection of the set of elements
which are Voronoi neighbors and the f closest elements
should be large.

The graph can be constructed by sequential insertion of
all elements. For every new coming element, we find the
set of its closest neighbors (Delaunay graph approxima-
tion) from the structure. The set is connected to the
element and vice versa. One of the advantages of this
approach (already shown empirically for one-dimensional
data [37]) is that a graph created by such algorithm
with general metric data arriving in random order has
small world navigation properties without any additional
arrangements.

To determine the set of f closest elements, we use
approximate kNN search algorithm (see Section 4.2). The
algorithm takes three parameters: the object to be
inserted in the structure, and two positive integer num-
bers: f (number of nearest neighbors to connect) and w

(number of multi-searches).
First, the algorithm determines a set neighbors contain-

ing f local closest elements using the procedure



Fig. 2. The average hop count induced by a greedy search algorithm for
different dimensionality Euclidean data (k¼10, w¼20). The navigable
small world properties are evident from the logarithmic scaling.

Y. Malkov et al. / Information Systems 45 (2014) 61–68 65
k-NNSearch (see Section 4.2). After that new_object is
connected to every object in a set and vice versa.
Nearest_Neighbor_Insert(object: new_object, integer:

f, integer: w)

1 SET[object]: neighbors←k-NNSearch (new_object, w,

f);

2 for (I←0; iof; iþþ) do

3 neighbors [i].connect(new_object);

4 new_object.connect(neighbors [i]);

5.1. Choice of parameters

The parameter w affects how accurate is determination
(recall) of nearest neighbors in the construction algorithm
[36]. Like in Section 4.2, setting w to a big number is
equivalent to exhaustive search of the closest elements in
the structure resulting in a perfect recall. The idea is to set
w big enough to have the recall close to unity (e.g. 0.95–
0.99). Smaller recall will create a fraction of wrong links
which solely increase complexity of the algorithm, while
our experiments indicate that increasing recall at insertion
higher than 0.99 have no measurable effect on the search
quality. Test have also shown that w for optimal recall
changes slowly (logarithmically) with the dataset size, so if
we already know the approximate w0 for a good recall, we
can run random query tests, firstly with much larger m

(e.g. m¼2nw0þ10), assuming that m is large enough for
the results of the search to be true k nearest neighbors,
and then increase w, repeating the tests until we have a
high recall (e.g. 0.95–0.99). The complexity of the opera-
tion is logarithmic to the size of the dataset so it does not
affect the overall construction complexity.

The tests indicate [36] that at least for Euclid data with
d¼1...20, the optimal value for number of neighbors to
connect (f) is about 3d, making memory consumption
linear with the dimensionality. Lesser values of f can be
used to reduce the complexity of a single search, sacrifi-
cing its recall quality.
6. Test results and discussion

6.1. Test data

We have implemented the algorithms presented above
in order to validate our assumptions about the scalability
of the structure, and to evaluate its performance. In our
tests we have used a workstation based on two Intel
Xeon X5675 six core processors with 192 Gb of RAM.
The algorithm was written in Java using the Oracle Java
Platform.

We have used the following test datasets:
�
 Uniformly distributed random points with L2 (Eucli-
dean distance) distance function (up to 5� 107 ele-
ments, up to 50 dimensions).
�
 A subset of the CoPHiR [38] dataset for comparison
with other works. 208-dimensional feature vectors
were extracted from the database. L1-metric was used
as a distance function. 30 approximate nearest neigh-
bors are found during a search.
6.2. Small world navigation properties

To verify the small world navigation properties of the
proposed structure, we have measured the average path
length induced by the greedy search algorithm (see
Section 4.1) for the points in different dimensionality
Euclidean spaces (see Fig. 2). The values of f were set to
3d. The plot clearly shows logarithmic dependence of the
greedy search path length on the dataset size, proving that
the proposed structure is a navigable small world. Note
that for bigger dimensionalities dependence is weaker.
This is not due to different values of f (they do not affect
the length of the path significantly), but possibly due
shortening of the set's “topological diameter”. When
greedy algorithm encounters long range links, it selects
the elements in the direction close to the query and
disregards other directions, making the search quasi one-
dimensional.

The logarithmic complexity corrupts if we add ele-
ments that gradually expand the volume of the set (i.e.
non-random insertion) or update the links of elements
deleting links that do not connect to a one of the closest f
elements. These facts allow concluding that the navigable
small world feature of the graph is based on keeping long-
range links of Delaunay approximation links, created in the
beginning of construction.

6.3. Parallel and distributed operation

One of the key features of the proposed approach is
that the structure is expressed in terms of independent
objects connected only by links. The elements can be
located on different computers sharing the load. A dis-
tributed prototype based on Apache Tomcat was devel-
oped. The communication between the servers was based
on a client-server model. A client (which may be any
server) performs the algorithm described in Section 4.2
with an exclusion of step 12 which requires getting link list
from other servers. To improve the performance (but in
expense of memory requirements) of the prototype the



Fig. 4. Distance calculations and the value of m to get a 0.999 recall versus
the size of the dataset for d¼20. The metric calculation count has
C log2ðnÞ complexity scaling.

Y. Malkov et al. / Information Systems 45 (2014) 61–6866
link list of each element also contains a copy of the object
for every link in the list. This allows saving about 6d data
requests between the servers at each step of the algorithm

Our earlier tests for d¼1 with on a 4-node computer
cluster show that this approach leads to almost linear
scalability of total throughput with the respect to the
number of processing cores in the system. Future test are
required to demonstrate the work of the distributed
prototype for different data.

We have also performed experiments with parallel
insertion of the elements. For d¼10 the first 1000 ele-
ments in the database where inserted serially. After that
the insertion was done by 16 parallel threads. In spite of
the very small database size and potentially many assem-
bling errors, we found no measurable decrease of search
accuracy in the tests, allowing massive parallel construc-
tion without any additional synchronization means.
Fig. 5. Average fraction of visited elements within a single 10-NN-search
with 0.999 recall for about 22 million elements dataset.
6.4. k-Nearest neighbor search complexity scaling

Our primary quality measure is the recall: the ratio
between relevant results and the objects obtained by the
approximate search. We calculate recall by dividing the
average number of true results within a search by k, the
number of neighbors to find (so it ranges from zero to
one). We also measure the fraction of visited elements to
evaluate the complexity of search. This fraction is calcu-
lated by dividing the overall metric calculations during a
single search by the total number of elements.

We have run tests on random Euclidean data with a
fixed recall 0.999 for different dimensionalities (from 3 to
50). The fixed value of a search recall was controlled by
adjusting the parameter m. Construction parameter f was
set to 3d for all trials (optimum value for high recall) and w

was updated to get high recall (0.99) of test data in the
construction algorithm. We have used 20,000 random
elements with different seed number as queries, and
found k¼10 closest neighbors during the search. The plot
on Fig. 3 presents the result in a log–log scale for different
dimensionalities. It shows that with the increase of the
number of elements in the structure, the percentage of
Fig. 3. Average fraction of visited elements within a single 10-NN-search
with 0.999 recall versus the size of the dataset for different dimensionality.
visited elements decreases, and the curves become close to
straight lines (corresponding to power law of decay). This
means that that for a fixed accuracy search complexity
does not change significantly with the size of the dataset.
The overall complexity of a fixed recall search together
with the value m to get the desired recall is depicted in
Fig. 4. The complexity scales as C log2ðnÞ, just as it might be
expected. One “log” comes from the average path length of
the navigable small world (see Fig. 2), and the other comes
from the number of multi-searches (Fig. 4).
6.5. Dimensionality scaling

To test the dimensionality scaling we have plotted in
Fig. 5 the average fraction of visited elements within a
single 10-NN-search with 0.999 recall for about 22 million
elements dataset versus dimensionality. A plateau with an
“optimal” value of the dimensionality is clearly seen from
the plot. The position of the “optimum” value of dimen-
sionality slowly shifts with increasing dataset size, which
may be attributed to shorter greedy paths at higher dimen-
sionality (see Section 6.2).



Y. Malkov et al. / Information Systems 45 (2014) 61–68 67
6.6. CoPHiR, comparison with other works

To get an idea about how the algorithm performs
compared to previous k-NN algorithms, we have run a
test from [25], a 10 million entries subset of CoPHiR
collection [38]. We have used the same L1 distance on
208 dimensional features extracted from xml documents.
k¼30 nearest neighbors were found during a search. 100
thousands different (other) elements from the dataset
were used as queries. Construction of the structure was
done in parallel by 16 threads and took about 2 h.

Since for optimal f�30–40 (effective dimensionality
10–13) the algorithm achieves high recall even at a single
search, we have compared the recall error (one minus
recall) instead of recall (see in Fig. 6 the recall error versus
fraction of the visited elements in a logarithmic scale). The
achieved results are even slightly better than the expected
exponential decrease. Only 0.031% of the database needed
to be evaluated to get 0.999 recall, which makes the search
virtually exact. In terms of throughput, at m¼1 with recall
Fig. 6. Average fraction of visited elements within a single k-NN-search
vs recall error for 10 M 208 dimensional vectors from CoPHiR database.
The inset shows logarithmic rise of distance calculations to get 0.999
recall (vertical) with the dataset size (horizontal).

Fig. 7. Average fraction of visited elements within a single k-NN-search
vs recall error for 10 million CoPHiR objects.
�0.92 about 2800 searches per second can be done in
parallel on our 12-core test system. The inset of the Fig. 6
shows logarithmic rise of number of evaluated elements
for a single 0.999 recall search with the growth of the
dataset size.

See the Fig. 7 for the comparison with the data for
NAPP, with K¼7 the parameter [25]. Values of s in NAPP
were selected to get best recall at fixed fraction of visited
elements. Our algorithm is very effective at big dataset
size, especially in case of high recall, requiring more that
hundred time less metric computation at a recall of 0.999.

The comparison to Ordering Permutation index [34]
at low(104) number of points but high dimensionality
(d¼1024), which means that the small world navigation
properties do not play a critical role, showed that our
algorithm yields in performance(about 65% database ele-
ments visited for our algorithm get 0.9 recall versus 42%
for the OP).
7. Conclusions and open problems

We have proposed a method of organizing data into a
navigable small world graph structure suited for the
distributed approximate k-nearest neighbor search in
metric spaces. The algorithm uses no information about
inner topology of the data and space (i.e. relying only on
relative distances between the objects from a set and
query), and thus in principle is applicable to arbitrary
metric data. The search is approximate from the probabil-
istic point of view.

The algorithm is very simple and easy to understand.
The navigable small world feature of the graph is due to
keeping long-range links of Delaunay approximation links,
created in the beginning of construction, it does not use
the metric space structure. All elements in the structure
are of the same type, there is no central or root element.
The algorithm handles insertions the same way as queries,
by finding approximate neighbors for the inserted element
and connecting it to them. The algorithm uses only local
information on each step and can be initiated from any
vertex.

Accuracy of the approximate search can be raised by
using multiple searches with a random initial vertex, and
the recall error decreases exponentially with the number
of visited elements. Very high recall (better than 0.999)
can be obtained at low complexity, making our approach a
strong rival for exact search structures. Both logarithmic
search and construction complexity at fixed accuracy can
be achieved, and they both can be done in parallel without
special care. It is shown experimentally that the dimen-
sionality dependence is weak for Euclidean data.

Comparison with other algorithms based on permuta-
tion indexes has shown that on a big dataset there are
scenarios where the proposed approach can offer much
higher efficiency (up to more than an order of magnitude
at fixed recall) in the number of metric computations. Only
0.03% percent of the 10 million 208-dimensional CoPHiR
dataset is needed to be evaluated to achieve 0.999 recall
(virtually exact search). For recall 0.93 processing speed
2800 queries/s can achieved on a single server node.



Y. Malkov et al. / Information Systems 45 (2014) 61–6868
The proposed modified k-NN search algorithm provides
very high efficiency and good scalability at large datasets.
However, still there are several ways to optimize the
structure in order to get lower complexity and/or better
accuracy constants, such as
�
 More sophisticated algorithms for node friends selec-
tion (see Section 5). It is quite evident that selecting
nearest neighbors as friends is not the best way to
approximate Delaunay graph, since this approach takes
into account only distances between the new element
and candidates, and disregards distances between the
candidates. Knowledge of internal structure of the
metric space can boost search performance. In [13]
is was shown that for Euclidean space the accuracy
of a single search can be significantly increased while
keeping the number of friends per node fixed.
�
 More sophisticated algorithms for navigable small world
creation.
�
 More efficient management of multiple searches.

Even though the algorithm in principle can be applied for
arbitrary metric spaces and its performance is shown experi-
mentally in vector spaces and CoPHiR it is not clear what is
the actual the range of applicability of the algorithm. Further
investigations are required to clarify this point.

To sum up, simplicity, effectiveness, high scalability
both in size and data dimensionality, and the distributed
nature of the algorithm are a good base for building many
real-world similarity search applications.
Acknowledgments

We would like to thank G. Navarro for helpful advices
and I. Malkova for help in preparation of the manuscript.

References

[1] T.M. Cover, P.E. Hart, Nearest neighbor pattern classification, IEEE
Trans. Inf. Theor. 13 (1) (1967) 21–27.

[2] M. Flickner, et al., Query by Image and Video Content: the Qbic
System Computer, vol. 28, 1995, 23–32.

[3] S. Cost, S. Salzberg, A weighted nearest neighbor algorithm for
learning with symbolic features, Mach. Learn. 10 (1) (1993) 57–78.

[4] B., Sarwar, G. Karypis, J. Konstan, J. Riedl, Item-Based Collaborative
Filtering Recommendation Algorithms, New York, USA, 2001.

[5] R. Rhoads, W. Rychlik, A computer program for choosing optimal
oligonudeotides for filter hybridization, sequencing and in vitro ampli-
fication of DNA, Nucletic Acids Res. 17 (21) (1989) 8543–8551.

[6] S. Deerwester, S.T. Dumais, T.K. Landauer, G.W. Furnas,
R.A. Harshman, Indexing by latent semantic analysis, J. Am. Soc.
Inf. Sci. 41 (1990) 391–407.

[7] F. Aurenhammer, Voronoi diagrams — a survey of a fundamental
geometric data structure, ACM Comput. Surv. (CSUR) 23 (3) (1991)
345–405.

[8] G. Navarro, Searching in metric spaces by spatial approximation,
VLDB J. 11 (1) (1999) 28–46.

[9] J., Kleinberg, The small-world phenomenon: an algorithmic per-
spective, in: Proceedings of the Annual ACM Symposium on Theory
of Computing, vol. 32, 2000, pp. 163–170.

[10] D.J. Watts, S.H. Strogatz, Collective dynamics of ‘small-world’
networks, Nature 393 (6684) (1998) 440–442.

[11] O. Sandberg, Neighbor selection and hitting probability in small-
world graphs, Ann. Appl. Probab. 18 (5) (2008) 1771–1793.
[12] O. Sandberg, The Structure and Dynamics of Navigable Networks,
Division of Mathematical Statistics, Department of Mathematical
Sciences, Chalmers University of Technology and Göteborg University,
2007.

[13] O. Beaumont, A.-M. Kermarrec, É. Rivière, Peer to Peer Multidimen-
sional Overlays: Approximating Complex Structures, Heidelberg,
Berlin, 2007.

[14] O. Sandberg, I. Clarke, The evolution of navigable small-world
networks. 〈arXiv:preprint cs/0607025〉, 2006.

[15] J.L. Bentley, Multidimensional binary search trees used for associa-
tive searching, Commun. ACM 18 (9) (1975) 509–517.

[16] R.A. Finkel, J.L. Bentley, Quad trees: a data structure for retrieval on
composite keys, Acta Inf. 4 (1) (1974) 1–9.

[17] D.T. Lee, C.K. Wong, Worst-case analysis for region and partial region
searches in multidimensional binary search trees and balanced quad
trees, Acta Inf. 9 (1) (1977) 23–29.

[18] E. Chávez, G. Navarro, R. Baeza-Yates, J.L. Marroquín, Searching in
metric space, J. ACM Comput. Surv. (CSUR) 33 (3) (2001) 273–321.

[19] S. Arya, D. Mount, Approximate nearest neighbor queries in fixed
dimensions, in: Proceedings of the fourth annual ACM-SIAM Sym-
posium on Discrete algorithms, SODA'93, Philadelphia, PA, USA,
1993.

[20] P. Indyk, R. Motwani, Approximate nearest neighbors: towards
removing the curse of dimensionality, in: Proceedings of STOC'98,
New York, USA, 1998.

[21] E., Kushilevitz, R. Ostrovsky, Y. Rabani. Efficient search for approx-
imate nearest neighbor in high dimensional spaces, in: Proceedings
of STOC'98, New York, USA 1998.

[22] P., Haghani, S. Michel, K. Aberer, Distributed similarity search in high
dimensions using locality sensitive hashing, in: Proceedings of the
12th International Conference on Extending Database Technology:
Advances in Database Technology, New York, USA, 2009, pp. 744–755.

[23] S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman, A. Wu. An
optimal algorithm for approximate nearest neighbor searching. in:
Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, Society for Industrial and Applied Mathematics, 1994.

[24] E. Chávez, K. Figueroa, G. Navarro, Effective proximity retrieval by
ordering permutations, IEEE Trans. Pattern Anal. Mach. Intell. 30 (9)
(2008) 1647–1658.

[25] E.S. Tellez, E. Chávez, G. Navarro, Succinct nearest neighbor search,
in: Proceedings of SISAP, 2011.

[26] M.E., Houle, J. Sakuma. Fast approximate similarity search in
extremely high-dimensional data sets, in: Proceedings of ICDE 2005.

[27] E. Chávez, E. Sadit Tellez, Navigating k-nearest neighbor graphs to
solve nearest neighbor searches, Adv. Pattern Recog. (2010) 270–280.

[28] K.L. Clarkson, Nearest neighbor queries in metric spaces, Discrete
Comput. Geometry 22 (1) (1999) 63–93.

[29] B. Bustos, G. Navarro, Probabilistic proximity searching algorithms
based on compact partitions, J. Discrete Algorithms 2 (1) (2004)
115–134.

[30] E. Chávez, G. Navarro, A probabilistic spell for the curse of dimen-
sionality, in: Proceedings of the Algorithm Engineering and Experi-
mentation, Springer, 2001 pp. 147–160.

[31] E. Chávez, G. Navarro, Probabilistic proximity search: fighting the
curse of dimensionality in metric spaces, Inf. Process. Lett. 85 (1)
(2003) 39–46.

[32] M. Patella, P. Ciaccia, Approximate similarity search: a multi-faceted
problem, J. Discrete Algorithms 7 (1) (2009) 36–48.

[33] T. Skopal, B. Bustos, On nonmetric similarity search problems in
complex domains, ACM Comput. Surveys (CSUR) 43 (4) (2011) 34.

[34] E.C. Gonzalez, K. Figueroa, G. Navarro, Effective Proximity Retrieval
by Ordering Permutations, IEEE Trans. Pattern Anal. Mach. Intell.
30 (9) (2008) 1647–1658.

[35] O. Beaumont, A.-M. Kermarrec, L. Marchal, E. Riviere., VoroNet: A
scalable Object Network Based on Voronoi Tessellations, Long Beach,
US, 2007.

[36] Y. Malkov, A. Ponomarenko, A. Logvinov, V. Krylov, Scalable dis-
tributed algorithm for approximate nearest neighbor search pro-
blem in high dimensional general metric spaces, in: Proceedings of
the Similarity Search and Applications, Springer Berlin Heidelberg,
2012, pp. 132–147.

[37] V. Krylov, A. Ponomarenko, A. Logvinov, D. Ponomarev, Single-
attribute distributed metrized small world data structure, in:
Proceedings of the IEEE International Conference on Intelligent
Computing and Intelligent Systems (CAS), 2009.

[38] P. Bolettieri, A. Esuli, F. Falchi, C. Lucchese, R. Perego, T. Piccioli,
F. Rabitti, CoPhIR: A Test Collection for Content-Based Image
Retrieval, 2009. Available from: 〈http://arxiv.org/abs/0905.4627v2〉.

http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref1
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref1
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref2
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref2
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref3
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref3
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref4
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref4
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref4
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref5
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref5
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref5
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref6
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref6
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref6
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref7
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref7
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref8
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref8
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref9
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref9
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref10
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref10
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref10
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref11
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref11
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref12
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref12
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref13
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref13
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref13
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref14
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref14
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref15
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref15
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref15
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref16
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref16
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref17
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref17
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref18
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref18
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref18
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref19
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref19
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref19
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref20
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref20
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref21
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref21
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref22
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref22
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref22
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref23
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref23
http://refhub.elsevier.com/S0306-4379(13)00130-0/sbref23
http://arxiv.org/abs/0905.4627v2

	Approximate nearest neighbor algorithm based on navigable small world graphs
	Introduction
	Related work
	Core idea
	Search algorithm
	Basic greedy search algorithm
	k-NN search modification

	Data insertion algorithm
	Choice of parameters

	Test results and discussion
	Test data
	Small world navigation properties
	Parallel and distributed operation
	k-Nearest neighbor search complexity scaling
	Dimensionality scaling
	CoPHiR, comparison with other works

	Conclusions and open problems
	Acknowledgments
	References




